Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation

نویسندگان

  • T. P. Remington
  • C. J. Ruestes
  • E. M. Bringa
  • B. A. Remington
  • C. H. Lu
چکیده

The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [100], [110] and [111] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below 7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [001] and [111] indentations. The prismatic loops advance into the material along h111i directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally ( 1.2 10 m ), by MD ( 7 10 m ) and through an analytical calculation (2.6–19 10 m ). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity. 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation

In this work, the interaction between dislocation loop (DL) and coherent twin boundary (CTB) in a body-centered cubic (BCC) tantalum (Ta) film during nanoindentation was investigated with molecular dynamics (MD) simulation. The formation and propagation of <111> full DLs in the nanotwinned (nt) Ta film during the indentation was observed, and it was found that CTB can strongly affect the stress...

متن کامل

Growth and Collapse of Nanovoids in Tantalum Monocrystals Loaded at High Strain Rate

Shock-induced spall in ductile metals is known to occur by the sequence of nucleation, growth and coalescence of voids, even in high purity monocrystals. However, the atomistic mechanisms involved are still not completely understood. The growth and collapse of nanoscale voids in tantalum are investigated under different stress states and strain rates by molecular dynamics (MD) simulations. Thre...

متن کامل

The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m) and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB) sliding deformation with m of 0.5. Hardnes...

متن کامل

Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation.

The plastic deformation of Ti45Zr16Be20Cu10Ni9 bulk metallic glass has been investigated by nanoindentation performed with loads ranging from 10 to 200 mN in a wide range of loading rates. The plastic flow in the alloy exhibited conspicuous serrations at low loading rates. The serrations, however, became less prominent as the rate of indentation increased. Atomic force microscopy showed a signi...

متن کامل

DENDRITE FRAGMENTATION IN THE SHEARED MELT BY FATIGUE EROSION MECHANISM OF SEMISOLID Al-Si ALLOY (A.356.0

Over the last few decades, there have been many mechanisms proposed to describe the formation of the non-dendritic microstructures during Semisolid Metal (SSM) processing; including dendrite fragmentation, spherical growth, cellular growth and recalescence. Dendrite fragmentation is the most popular mechanism of all these hypotheses. It is the purpose of the present article to examine the morph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014